Kategorie

A B C D E
F G H I J
K L M N O
P Q R S T
U V W X Y
Z 0      

multivariate verteilung

ma mb mc md me mf mg mh mi mj mk ml mm
mn mo mp mq mr ms mt mu mv mw mx my mz

Multivariate Verteilung

Die gemeinsame Wahrscheinlichkeitsverteilung mehrerer Zufallsvariablen nennt man multivariate Verteilung oder auch mehrdimensionale Verteilung.

Table of contents
1 Formale Darstellung
2 Ausgewählte multivariate Verteilungen
3 Die multivariate Normalverteilung
4 Beispiel für eine multivariate Normalverteilung
5 Stichproben bei Multivariaten Verteilungen
6 Beispiel zu Stichproben
7 Literatur

Formale Darstellung

Um Verwechslungen zu vermeiden, werden Zufallsvariablen - wie meistens - groß geschrieben, Zufallsvektoren jedoch klein. Matrizen und Vektoren werden unterstrichen.

Man betrachtet p viele Zufallsvariablen Xj (j = 1, ..., p), jeweils mit einem Erwartungswert EXj und der Varianz varXj. Die Zufallsvariablen sind zudem paarweise korreliert mit der Kovarianz covXjXk (j,k = 1, ...,p; j ? k).

Man interessiert sich für die gemeinsame Wahrscheinlichkeit, dass alle Xj höchstens gleich einer jeweiligen Konstanten xj sind, also

P(X1 ? x1 ? X2 ? x2 ? ... ? Xp ? xp) = FX(x1;x2; ... , xp).

Multivariate Zufallsvariablen werden i.a. in Matrixform dargestellt. Man fasst die Zufallsvariablen in einem (px1)-Zufallsvektor X zusammen:

.

Für die obige gemeinsame Wahrscheinlichkeit erhält man

.

Die Erwartungswerte befinden sich im (px1)-Erwartungswertvektor

.

Die Varianzen werden zusammen mit den Kovarianzen in der (pxp)-Kovarianzmatrix ? aufgeführt:

Man sieht, dass ? symmetrisch ist. Auf der Hauptdiagonalen sind die Varianzen angeordnet. x ist also verteilt mit dem Erwartungswertvektor EX und der Kovarianzmatrix ?.

Die Umformung zu den Korrelationskoeffizienten

ergibt die Korrelationsmatrix

Gemeinsame Wahrscheinlichkeiten sind häufig schwierig zu berechnen, vor allem, wenn schon die Einzelwahrscheinlichkeiten nicht analytisch bestimmbar sind. Man behilft sich dann gegebenenfalls mit Abschätzungen. Vor allem können die Auswirkungen der Kovarianz auf die Verteilung in der Regel nicht abgesehen werden.

Sind die Zufallsvariablen stochastisch unabhängig, ist die gemeinsame Wahrscheinlichkeit gleich dem Produkt der entsprechenden Einzelwahrscheinlichkeiten.

.

Ausgewählte multivariate Verteilungen

Von Bedeutung sind vor allem die

  • multivariate Normalverteilung,
  • Hotelling t-Verteilung als multivariate t-Verteilung,
  • Wishart-Verteilung als multivariate Chi-Quadrat-Verteilung,

die multivariaten Verfahren zu Grunde liegen. Meistens ist es möglich, mittels einer linearen Transformation den Zufallsvektor in ein Skalar umzuwandeln, das dann univariat verteilt ist und so als Testprüfgröße fungiert.

Die multivariate Normalverteilung

Gegeben ist ein Vektor x aus p gemeinsam normalverteilten Zufallsvariablen mit dem Erwartungswertvektor ? und der Kovarianzmatrix ?. Die gemeinsame Dichtefunktion der Vektorkomponenten ist gegeben durch

.

Es ist also

.

Die Kovarianzmatrix ? ist i. a. positiv definit. Die Werte der Verteilungsfunktion F müssen numerisch ermittelt werden.

Die multivariate Normalverteilung hat spezielle Eigenschaften:

  • Sind die Komponenten des Zufallsvektors x paarweise unkorreliert, sind sie auch stochastisch unabhängig.

  • Die lineare Transformation y = a + BX mit B als (qxp)-Matrix (q ? p) und a als (qx1)-Vektor ist q-dimensional normalverteilt als Nq (a + B?; B?BT).

  • Die lineare Transformation
standardisiert den Zufallsvektor x. Es ist

.

also sind die Komponenten von y stochastisch unabhängig.

  • X kann auch eine singuläre Kovarianzmatrix besitzen. Man spricht dann von einer degenierten oder singulären multivariaten Normalverteilung.

Beispiel für eine multivariate Normalverteilung

Betrachtet wird eine Apfelbaumplantage mit sehr vielen gleich alten, also vergleichbaren Apfelbäumen. Man interessiert sich für die Merkmale Größe der Apfelbäume, die Zahl der Blätter und die Erträge. Es werden also die Zufallsvariablen definiert:

X1: Höhe eines Baumes [m]; X2 : Ertrag [100 kg]; X3 : Zahl der Blätter [1000 Stück].

Die Variablen sind jeweils normalverteilt wie

Die meisten Bäume sind also um 4 ± 1m groß, sehr kleine oder sehr große Bäume sind eher selten. Bei einem großen Baum ist der Ertrag tendenziell größer als bei einem kleinen Baum, aber es gibt natürlich hin und wieder einen großen Baum mit wenig Ertrag. Ertrag und Größe sind korreliert, die Kovarianz beträgt covX1X2=9 und der Korrelationskoeffizient ?12 = 0,9.

Ebenso ist covX1X3=12,75 mit dem Korrelationskoeffzienten ?13 = 0,85, und covX2X3=120 mit dem Korrelationskoeffzienten ?23 = 0,8.

Fasst man die drei Zufallsvariablen im Zufallsvektor x zusammen, ist x multivariat normalverteilt mit

und

.

Die entsprechende Korrelationsmatrix ist

.

Stichproben bei Multivariaten Verteilungen

In der Realität werden in aller Regel die Verteilungsparameter einer Multivariaten Verteilung nicht bekannt sein. Diese Parameter müssen also geschätzt werden.

Man zieht eine Stichprobe vom Umfang n. Jede Realisation i (i=1,...,n) des Zufallsvektors x könnte man als Punkt in einem p-dimensionalen Hyperraum auffassen. Man erhält so die (nxp)-Datenmatrix X als

,

die in jeder Zeile die Koordinaten eines Punktes enthält.

Der Erwartungswertvektor wird geschätzt durch den Mittelwertvektor der p arithmetischen Durchschnitte

mit den Komponenten

.

Für die Schätzung der Kovarianzmatrix erweist sich die bezüglich der arithmetischen Mittelwerte zentrierte Datenmatrix X* als nützlich. Sie berechnet sich als

,

mit den Elementen x*ij, wobei l einen (nx1)-Spaltenvektor mit lauter Einsen bedeutet.

Die (pxp)-Kovarianzmatrix hat die geschätzten Komponenten

.

Sie ergibt sich als

.

Die Korrelationsmatrix R wird geschätzt durch die paarweisen Korrelationskoeffizienten

,

auf ihrer Hauptdiagonalen stehen Einsen.

Beispiel zu Stichproben

Es wurden 10 Apfelbäume zufällig ausgewählt. Die 10 Beobachtungen werden in der Datenmatrix X zusammengefasst:

.

Die Mittelwerte berechnen sich, wie beispielhaft an gezeigt, als

.

Sie ergeben den Mittelwertvektor

Für die zentrierte Datenmatrix X* erhält man die zentrierten Beobachtungen, indem man von den Spalten den entsprechenden Mittelwert abzieht:

3,3 - 4,9 = -1,6; 24 ? 40 = -16; 27 - 40 = -22
4,9 - 4,0 = 0; 41 - 40 = 1; 55 - 49 = 6
...
,

also

.

Man berechnet für die Kovarianzmatrix die Kovarianzen, wie im Beipiel,

und entsprechend die Varianzen

,

so dass sich die Kovarianzmatrix

ergibt.

Entsprechend erhält man für die Korrelationsmatrix zum Beispiel

bzw. insgesamt

.

Literatur

  • Mardia, KV, Kent, JT, Bibby, JM: Multivariate Analysis, New York 1979
  • Fahrmeir, Ludwig, Hamerle, Alfred, Tutz, Gerhard (Hrsg): Multivariate statistische Verfahren, New York 1996
  • Hartung, Joachim, Elpelt, Bärbel: Multivariate Statistik, München, Wien 1999

Impressum

Datenschutzerklärung