Kategorie

A B C D E
F G H I J
K L M N O
P Q R S T
U V W X Y
Z 0      

aminosa ure

aa ab ac ad ae af ag ah ai aj ak al am
an ao ap aq ar as at au av aw ax ay az

Aminosäure

Aminosäuren sind die chemischen Bausteine von Peptiden und Proteinen (Eiweißen). Aminosäuren sind eine Gruppe von Verbindungen mit einer Carboxylgruppe (-COOH) und einer Aminogruppe (-NH2). Die verschiedenen Aminosäuren unterscheiden sich in einer Seitenkette, auch Rest genannt. Im allgemeinen Sprachgebrauch versteht man unter Aminosäuren die 20, die in der DNA codiert werden. Diese sind stets ?-Aminosäuren vor, d.h. die Aminogruppe ist an das der Carboxylgruppe benachbarte Kohlenstoffatom gebunden. Es gibt aber über 500 natürliche Aminosäuren (zu diesen anderen Aminosäuren gehört z.B. das Thyroxin, ein Hormon der Schilddrüse).

Aminosäuren können sich zu langen Ketten verbinden, die, je nach Länge, Peptide oder Proteine genannt werden. Die einzelnen Aminosäuren sind dabei innerhalb der Kette über Peptidbindungen verknüpft.

Alle Lebewesen stellen Proteine aus Aminosäuren zusammen; die Aminosäuren und ihre Reihenfolge sind in der Desoxyribonukleinsäure (DNA) in Basentripletts (Codons)codiert. Aminosäuren, die ein Organismus nicht selbst herstellen kann, heißen essentielle Aminosäuren. Sie müssen mit der Nahrung aufgenommen werden. Semi-essentielle Aminosäuren müssen nur in bestimmten Situationen mit der Nahrung aufgenommen werden, z.B. während des Wachstums oder bei schweren Verletzungen. Die übrigen Aminosäuren werden entweder direkt synthetisiert, oder aus anderen Aminosäuren durch Austausch oder Umwandlung der Seitenkette gewonnen.

Die letzte Entdeckung war das Pyrolysin, entdeckt in einer Mikrobe, die im Verdauungstrakt von Kühen lebt. Wissenschaftler von der Ohio State University (USA) haben den 22. bislang bekannten im Erbgut kodierten Baustein des Lebens aufgespürt

Table of contents
1 Chiralität
2 Säure- und Basen-Verhalten
3 In Proteinen vorkommende Aminosäuren
4 Quellen
5 Weblinks

Chiralität

Fast alle Aminosäuren sind chiral gebaut. Sie besitzen ein asymmetrisches Kohlenstoffatom, das als chirales Zentrum wirkt. Daher gibt es (mit Ausnahme von Glycin) stets zwei Enantiomere, die sich wie Bild und Spiegelbild verhalten. Bei chemischen Synthesen entstehen meist Racemate, bei biologischen Systemen aufgrund der Substratspezifität der beteiligten Enzyme dagegen die reinen Enantiomeren. Deshalb findet man bei Lebewesen fast ausschließlich nur ein Enantiomer, die L-Form der entsprechenden Aminosäure.

Säure- und Basen-Verhalten

Nach Brønsted ist eine Säure ein chemischer Stoff, der Protonen an Reaktionspartner abgeben kann (Protonendonator), eine Base hingegen ein Stoff, der vermittels eines freien Elektronenpaars Protonen aufnehmen kann (Protonenakzeptor). Man beachte, dass bei diesen Vorgängen ein Rollenwechsel stattfindet: Protonenabgabe macht aus einer Säure eine Base, Protonenaufnahme aus einer Base eine Säure.

In wässriger Lösung liegen freie Aminosäuren als Zwitterionen vor, d.h. die Aminogruppe ist protoniert und die Carboxylgruppe ist deprotoniert: H3N+-CHR-COO-. In Proteinen sind allerdings beide Gruppen an der Peptidbindung beteiligt und daher ungeladen.

Eine um so größere Bedeutung hat daher der saure oder basische Charakter der Seitenketten. Man kennt die sauren Aminosäuren Asp und Glu sowie die basischen Lys und Arg. Es dabei zu berücksichtigen, dass beim pH-Wert der Zelle die protonierte (saure) Form der Aminogruppe H3N+ und die deprotonierte (basische) Form der Carboxylgruppe COO- vorliegen.

Die geladenen Seitenketten beeinflussen zum einen das Löslichkeitsverhalten, sie machen Abschnitte eines Proteins hydrophil, zum anderen spielen sie eine wichtige Rolle bei der Anbindung und Umsetzung des Substrats.

pKS-Werte

Da der pKS-Wert als jener pH-Wert zu sehen ist, bei dem die protonierte bzw. deprotonierte Form zu gleichen Teilen vorliegen, gilt:

Bemerkenswert ist die Tatsache, dass die pKS-Werte der Aminosäureseitenketten nach Einbau in ein Protein dramatisch moduliert werden können (Tabelle). Sind diese Seitenketten gar Bestandteil eines aktiven Zentrums, so werden extreme Abweichungen möglich. Beispiele sind:
  • Chymotrypsin: enthält am aktiven Zentrum einen Ser-Rest, der (im Rahmen der "katalytischen Triade aus Asp-102 - His-57 - Ser-195) als Nucleophil (scheinbarer pKa-Wert von 7) reagieren kann;
  • Papain: ist am aktiven Zentrum ähnlich aufgebaut, enthält jedoch statt einem Ser- einen Cys-Rest mit analoger Funktion;
  • Ribonuklease: hat am aktiven Zentrum in der Tat einen "basischen" Lysin-Rest der (durch Einbau in einen positiv geladenen Käfig) ebenfalls als Nukleophil (pKa ~ 7) agiert;
  • Lysozym: enthält in einem nichtpolaren Abschnitt seines aktiven Zentrums eine (protonierte) Aminosäure mit pKa ~ 5.

Tabelle: pKS-Werte von Aminosäure-Seitenketten (für die freie Aminosäuren und nach Einbau in ein Protein)

Aminosäure frei Proteinbestandteil
Asp 3,68 3,7-4,0
Glu 4,25 4,2-4,5
His 6,0 6,7-7.1
Cys 8,33 8,8-9,1
Tyr 10,07 9,7-10,1
Lys 10,53 9,3-9,5
Arg 12,48 -

In Proteinen vorkommende Aminosäuren

L-Alanin (Ala)
L-Arginin (Arg) semi-essentiell
L-Asparagin (Asn)
L-Asparaginsäure (Asp)
L-Cystein (Cys)
L-Glutamin (Gln)
L-Glutaminsäure (Glu)
Glycin (Gly)
L-Histidin (His) semi-essentiell
L-Isoleucin (Ile) essentiell
L-Leucin (Leu) essentiell
L-Lysin (Lys) essentiell
L-Methionin (Met) essentiell
L-Phenylalanin (Phe) essentiell
L-Prolin (Pro)
Pyrrolysin
L-Selenocystein (Sec)
L-Serin (Ser)
L-Threonin (Thr) essentiell
L-Tryptophan (Trp) essentiell
L-Tyrosin (Tyr)
L-Valin (Val) essentiell

siehe auch: Phenylketonurie

Abkürzung Voller Name Seitenkettentyp Masse Isoelektrischer Punkt Bemerkungen
A Ala Alanin hydrophob 89.09 6.11 -
C Cys Cystein hydrophil 121.16 5.05 zwei Cysteine können eine Disulfidbindung ausbilden.
D Asp Asparaginsäure sauer 133.10 2.85 -
E Glu Glutaminsäure sauer 147.13 3.15 Reaktionsfolge ?-KetoglutaratGlu Gln ermöglich spontane Bindung des Zellgifts Ammoniak
F Phe Phenylalanin hydrophob 165.19 5.49 -
G Gly Glycin hydrophil 75.07 6.06 durch zwei Wasserstoffatome am ?-C-Atom ist Glycin nicht optisch aktiv.
H His Histidin basisch 155.16 7.60 pK-Wert im Neutralbereich; ermöglicht Säure/Basen-Katalyse; häufig an enzymatischen Reaktionen beteiligt
I Ile Isoleucin hydrophob 131.17 6.05 -
K Lys Lysin basisch 146.19 9.60 -
L Leu Leucin hydrophob 131.17 6.01 -
M Met Methionin hydrophob 149.21 5.74 -
N Asn Asparagin hydrophil 132.12 5.41 -
P Pro Prolin hydrophob 115.13 6.30 kann Proteinstrukturen wie ?-Helices oder ?-Faltblätter unterbrechen. cis- oder trans Konformation in Proteinen. Biosynthese aus Glu über Glu-Semialdehyd, Ringschluss und Reduktion
Q Gln Glutamin hydrophil 146.15 5.65 universeller NH2-Donor im Stoffwechsel
R Arg Arginin basisch 174.20 10.76 Metabolit im Harnstoffzyklus: Spaltung in Orn und Harnstoff. Kann energiereiches N-Phosphat bilden
S Ser Serin hydrophil 105.09 5.68 im Protein phosporylierbar (Kinasesubstrat)
T Thr Threonin hydrophil 119.12 5.60 im Protein phosporylierbar (Kinasesubstrat)
U Sec Selenocystein hydrophil 169,06 align="center"
aktives Zentrum von Selenoenzymen (Glutathion-Peroxidase, Deiodase)
V Val Valin hydrophob 117.15 6.00 -
W Trp Tryptophan hydrophob 204.23 5.89 bestimmt (neben Phe und Tyr) das Absorptionsspektrum von Proteinen
Y Tyr Tyrosin hydrophil 181.19 5.64 im Protein phosporylierbar (Substrat von Tyr-Kinasen)

Aminosäure positive
Nettoladung
negative
Nettoladung
aromatisch aliphatisch van-der- Waals-Volumen
Alanin - - - - 67
Cystein - - - - 86
Asparaginsäure - X - - 91
Glutaminsäure - X - - 109
Phehenylalanin - - X - 135
Glycin - - - - 48
Histidin (X) - X - 118
Lysin X - - - 135
Isoleucin - - - X 124
Leucin - - - X 124
Methionin - - - (X) 124
Asparagin - - - - 96
Prolin - - - - 90
Glutamin - - - - 114
Arginin X - - - 148
Serin - - - - 73
Threonin - - - - 93
Valin - - - X 105
Tryptophan - - X - 163
Tyrosin - - X - 141

Siehe auch: Ketosäuren

Quellen

Weblinks

  • Aminosäuren
  • Tagesbedarf unterschiedlicher Personengruppen essentieller Aminosäuren
  • Amino Acids, FU Berlin

Impressum

Datenschutzerklärung